多目标自组织追求(SOP)问题已广泛应用,并被认为是一个充满挑战的分布式系统的自组织游戏,在该系统中,智能代理在其中合作追求具有部分观察的多个动态目标。这项工作为分散的多机构系统提出了一个框架,以提高智能代理的搜索和追求能力。我们将一个自组织的系统建模为可观察到的马尔可夫游戏(POMG),具有权力下放,部分观察和非通信的特征。然后将拟议的分布式算法:模糊自组织合作协同进化(FSC2)杠杆化,以解决多目标SOP中的三个挑战:分布式自组织搜索(SOS),分布式任务分配和分布式单目标追踪。 FSC2包括一种协调的多代理深钢筋学习方法,该方法使均匀的代理能够学习天然SOS模式。此外,我们提出了一种基于模糊的分布式任务分配方法,该方法将多目标SOP分解为几个单目标追求问题。合作进化原则用于协调每个单一目标问题的分布式追随者。因此,可以缓解POMG中固有的部分观察和分布式决策的不确定性。实验结果表明,在所有三个子任务中,分布式不传动的多机构协调都具有部分观察结果,而2048 FSC2代理可以执行有效的多目标SOP,其捕获率几乎为100%。
translated by 谷歌翻译
现在,基于BERT的上下文排名模型已在各种段落和文档排名任务中已建立。但是,在对抗输入下基于BERT的排名模型的鲁棒性不足。在本文中,我们认为,伯特级居民对针对检索文件的对抗性攻击并不免疫。首先,我们提出了使用基于梯度的优化方法对高度相关和非相关文档的对抗扰动算法。我们的算法的目的是将少量令牌添加到高度相关或非相关的文档中,以引起大量降级或晋升。我们的实验表明,少数令牌已经可以导致文档等级发生很大变化。此外,我们发现伯特级速率在很大程度上依靠文档开始/头来进行相关性预测,从而使文档的初始部分更容易受到对抗攻击的影响。更有趣的是,我们发现一小部分反复出现的对抗性词,将这些单词添加到文档中后,这些单词分别导致任何相关/非相关/非相关文件的成功级别降级/促进。最后,我们的对抗令牌还显示了数据集内部和跨数据集内的特定主题偏好,从而暴露了BERT预训练或下游数据集中的潜在偏见。
translated by 谷歌翻译
Although large language models can be prompted for both zero- and few-shot learning, performance drops significantly when no demonstrations are available. In this paper, we introduce Z-ICL, a new zero-shot method that closes the gap by constructing pseudo-demonstrations for a given test input using a raw text corpus. Concretely, pseudo-demonstrations are constructed by (1) finding the nearest neighbors to the test input from the corpus and pairing them with random task labels, and (2) applying a set of techniques to reduce the amount of direct copying the model does from the resulting demonstrations. Evaluation on nine classification datasets shows that Z-ICL outperforms previous zero-shot methods by a significant margin, and is on par with in-context learning with labeled training data in the few-shot setting. Overall, Z-ICL provides a significantly higher estimate of the zero-shot performance levels of a model, and supports future efforts to develop better pseudo-demonstrations that further improve zero-shot results.
translated by 谷歌翻译
User and product information associated with a review is useful for sentiment polarity prediction. Typical approaches incorporating such information focus on modeling users and products as implicitly learned representation vectors. Most do not exploit the potential of historical reviews, or those that currently do require unnecessary modifications to model architecture or do not make full use of user/product associations. The contribution of this work is twofold: i) a method to explicitly employ historical reviews belonging to the same user/product to initialize representations, and ii) efficient incorporation of textual associations between users and products via a user-product cross-context module. Experiments on IMDb, Yelp-2013 and Yelp-2014 benchmarks show that our approach substantially outperforms previous state-of-the-art. Since we employ BERT-base as the encoder, we additionally provide experiments in which our approach performs well with Span-BERT and Longformer. Furthermore, experiments where the reviews of each user/product in the training data are downsampled demonstrate the effectiveness of our approach under a low-resource setting.
translated by 谷歌翻译
Deep Neural Networks have been widely used in many fields. However, studies have shown that DNNs are easily attacked by adversarial examples, which have tiny perturbations and greatly mislead the correct judgment of DNNs. Furthermore, even if malicious attackers cannot obtain all the underlying model parameters, they can use adversarial examples to attack various DNN-based task systems. Researchers have proposed various defense methods to protect DNNs, such as reducing the aggressiveness of adversarial examples by preprocessing or improving the robustness of the model by adding modules. However, some defense methods are only effective for small-scale examples or small perturbations but have limited defense effects for adversarial examples with large perturbations. This paper assigns different defense strategies to adversarial perturbations of different strengths by grading the perturbations on the input examples. Experimental results show that the proposed method effectively improves defense performance. In addition, the proposed method does not modify any task model, which can be used as a preprocessing module, which significantly reduces the deployment cost in practical applications.
translated by 谷歌翻译
In this paper, we aim to design an efficient real-time object detector that exceeds the YOLO series and is easily extensible for many object recognition tasks such as instance segmentation and rotated object detection. To obtain a more efficient model architecture, we explore an architecture that has compatible capacities in the backbone and neck, constructed by a basic building block that consists of large-kernel depth-wise convolutions. We further introduce soft labels when calculating matching costs in the dynamic label assignment to improve accuracy. Together with better training techniques, the resulting object detector, named RTMDet, achieves 52.8% AP on COCO with 300+ FPS on an NVIDIA 3090 GPU, outperforming the current mainstream industrial detectors. RTMDet achieves the best parameter-accuracy trade-off with tiny/small/medium/large/extra-large model sizes for various application scenarios, and obtains new state-of-the-art performance on real-time instance segmentation and rotated object detection. We hope the experimental results can provide new insights into designing versatile real-time object detectors for many object recognition tasks. Code and models are released at https://github.com/open-mmlab/mmdetection/tree/3.x/configs/rtmdet.
translated by 谷歌翻译
The statistical heterogeneity of the non-independent and identically distributed (non-IID) data in local clients significantly limits the performance of federated learning. Previous attempts like FedProx, SCAFFOLD, MOON, FedNova and FedDyn resort to an optimization perspective, which requires an auxiliary term or re-weights local updates to calibrate the learning bias or the objective inconsistency. However, in addition to previous explorations for improvement in federated averaging, our analysis shows that another critical bottleneck is the poorer optima of client models in more heterogeneous conditions. We thus introduce a data-driven approach called FedSkip to improve the client optima by periodically skipping federated averaging and scattering local models to the cross devices. We provide theoretical analysis of the possible benefit from FedSkip and conduct extensive experiments on a range of datasets to demonstrate that FedSkip achieves much higher accuracy, better aggregation efficiency and competing communication efficiency. Source code is available at: https://github.com/MediaBrain-SJTU/FedSkip.
translated by 谷歌翻译
Federated learning enables cooperative training among massively distributed clients by sharing their learned local model parameters. However, with increasing model size, deploying federated learning requires a large communication bandwidth, which limits its deployment in wireless networks. To address this bottleneck, we introduce a residual-based federated learning framework (ResFed), where residuals rather than model parameters are transmitted in communication networks for training. In particular, we integrate two pairs of shared predictors for the model prediction in both server-to-client and client-to-server communication. By employing a common prediction rule, both locally and globally updated models are always fully recoverable in clients and the server. We highlight that the residuals only indicate the quasi-update of a model in a single inter-round, and hence contain more dense information and have a lower entropy than the model, comparing to model weights and gradients. Based on this property, we further conduct lossy compression of the residuals by sparsification and quantization and encode them for efficient communication. The experimental evaluation shows that our ResFed needs remarkably less communication costs and achieves better accuracy by leveraging less sensitive residuals, compared to standard federated learning. For instance, to train a 4.08 MB CNN model on CIFAR-10 with 10 clients under non-independent and identically distributed (Non-IID) setting, our approach achieves a compression ratio over 700X in each communication round with minimum impact on the accuracy. To reach an accuracy of 70%, it saves around 99% of the total communication volume from 587.61 Mb to 6.79 Mb in up-streaming and to 4.61 Mb in down-streaming on average for all clients.
translated by 谷歌翻译
Existing natural language understanding (NLU) models often rely on dataset biases rather than intended task-relevant features to achieve high performance on specific datasets. As a result, these models perform poorly on datasets outside the training distribution. Some recent studies address the above issue by reducing the weights of biased samples during the training process. However, these methods still encode biased latent features in representations and neglect the dynamic nature of bias, which hinders model prediction. We propose an NLU debiasing method, named debiasing contrastive learning (DCT), to simultaneously alleviate the above problems based on contrastive learning. We devise a debiasing positive sampling strategy to mitigate biased latent features by selecting the least similar biased positive samples. We also propose a dynamic negative sampling strategy to capture the dynamic influence of biases by employing a bias-only model to dynamically select the most similar biased negative samples. We conduct experiments on three NLU benchmark datasets. Experimental results show that DCT outperforms state-of-the-art baselines on out-of-distribution datasets while maintaining in-distribution performance. We also verify that DCT can reduce biased latent features from the model's representations.
translated by 谷歌翻译
Existing deep learning-based traffic forecasting models are mainly trained with MSE (or MAE) as the loss function, assuming that residuals/errors follow independent and isotropic Gaussian (or Laplacian) distribution for simplicity. However, this assumption rarely holds for real-world traffic forecasting tasks, where the unexplained residuals are often correlated in both space and time. In this study, we propose Spatiotemporal Residual Regularization by modeling residuals with a dynamic (e.g., time-varying) mixture of zero-mean multivariate Gaussian distribution with learnable spatiotemporal covariance matrices. This approach allows us to directly capture spatiotemporally correlated residuals. For scalability, we model the spatiotemporal covariance for each mixture component using a Kronecker product structure, which significantly reduces the number of parameters and computation complexity. We evaluate the performance of the proposed method on a traffic speed forecasting task. Our results show that, by properly modeling residual distribution, the proposed method not only improves the model performance but also provides interpretable structures.
translated by 谷歌翻译